
Introduction to AI

Dr. Tamal Ghosh
Department of CSE
Adamas University

Uninformed Search Strategies
Lecture 4

Building Goal-Based Agents
• We have a goal to reach

– Driving from point A to point B
– Put 8 queens on a chess board such that no one attacks another
– Prove that John is an ancestor of Mary

• We have information about the current state, where we are
now at the beginning and after each action

• We have a set of actions we can take to move around
(change from where we are) if the preconditions are met

• Objective: find a sequence of legal actions which will bring
us from the start point to a goal

What is the goal to be achieved?

• Could describe a situation we want to achieve, a set of properties that we want to
hold, etc.

• Requires defining a “goal test” so that we know what it means to have
achieved/satisfied our goal.

• This is a hard part that is rarely tackled in AI, usually assuming that the system
designer or user will specify the goal to be achieved.

What are the actions?
• Quantify all of the primitive actions or events that are

sufficient to describe all necessary changes in solving a
task/goal.

• No uncertainty associated with what an action does to the
world. That is, given an action (aka operator or move) and a
description of the current state of the world, the action
completely specifies
– Precondition: if that action CAN be applied to the

current world (i.e., is it applicable and legal), and
– Effect: what the exact state of the world will be after the

action is performed in the current world (i.e., no need for
"history" information to be able to compute what the new
world looks like).

Actions
• Note also that actions can all be considered as discrete events

that can be thought of as occurring at an instant of time.
– That is, the world is in one situation, then an action occurs and

the world is now in a new situation. For example, if "Mary is in
class" and then performs the action "go home," then in the next
situation she is "at home." There is no representation of a point in
time where she is neither in class nor at home (i.e., in the state of
"going home").

• The number of operators needed depends on the
representation used in describing a state.

• Actions often are associated with costs

Representing states

• At any moment, the relevant world is represented as a state
– Initial (start) state: S
– An action (or an operation) changes the current state to

another state (if it is applied): state transition
– An action can be taken (applicable) only if the its

precondition is met by the current state
– For a given state, there might be more than one applicable

actions
– Goal state: a state satisfies the goal description or passes the

goal test
– Dead-end state: a non-goal state to which no action is

applicable

Representing states

• Stat space:
– Includes the initial state S and all other states that are

reachable from S by a sequence of actions
– A state space can be organized as a graph:

nodes: states in the space
arcs: actions/operations

• The size of a problem is usually described in terms of the
number of states (or the size of the state space) that are possible.
– Tic-Tac-Toe has about 3^9 states.
– Checkers has about 10^40 states.
– Rubik's Cube has about 10^19 states.
– Chess has about 10^120 states in a typical game.
– GO has more states than Chess

Closed World Assumption

• We will generally use the Closed World
Assumption. It is a formal logic that assumes that
a statement that is true is also known to be true.
This means that what is not known to be true is
false.

• All necessary information about a problem domain
is available in each percept so that each state is a
complete description of the world.

• There is no incomplete information at any point in
time.

Some example problems

• Toy problems and micro-worlds
– 8-Puzzle
– Missionaries and Cannibals
– Cryptarithmetic
– Remove 5 Sticks
– Traveling Salesman Problem (TSP)

• Real-world-problems

8-Puzzle
Given an initial configuration of 8 numbered tiles on a 3 x

3 board, move the tiles in such a way so as to produce a
desired goal configuration of the tiles.

8 puzzle
• State: 3 x 3 array configuration of the tiles on the board.
• Operators: Move Blank square Left, Right, Up or Down.

– This is a more efficient encoding of the operators than one in which
each of four possible moves for each of the 8 distinct tiles is used.

• Initial State: A particular configuration of the board.
• Goal: A particular configuration of the board.
• The state space is partitioned into two subspaces
• NP-complete problem, need to examine O(2^k) states

where k is the length of the solution path.
• 15-puzzle problems (4 x 4 grid with 15 numbered tiles), and

N-puzzles (N = n^2-1)

A portion of the state space of a 8-Puzzle problem

5 4
6 1 8
7 3 2

5 4
6 1 8
7 3 2

5 4 8
6 1
7 3 2

5 1 4
6 8
7 3 2

5 1 4
6 8
7 3 2

5 4
6 1 8
7 3 2

The 8-Queens Problem

Place eight queens on a
chessboard such that no
queen attacks any
other!

Total # of states:
4.4x10^9

Total # of solutions:
12 (or 96)

Missionaries and Cannibals
There are 3 missionaries, 3 cannibals,

and 1 boat that can carry up to two
people on one side of a river.

• Goal: Move all the missionaries and
cannibals across the river.

• Constraint: Missionaries can never be
outnumbered by cannibals on either side
of river, or else the missionaries are
killed.

• State: configuration of missionaries and
cannibals and boat on each side of river.

• Operators: Move boat containing 1 or 2
occupants across the river (in either
direction) to the other side.

Missionaries and Cannibals Solution
Near side Far side

0 Initial setup: MMMCCC B -

1 Two cannibals cross over: MMMC B CC

2 One comes back: MMMCC B C

3 Two cannibals go over again: MMM B CCC

4 One comes back: MMMC B CC

5 Two missionaries cross: MC B MMCC

6 A missionary & cannibal return: MMCC B MC

7 Two missionaries cross again: CC B MMMC

8 A cannibal returns: CCC B MMM

9 Two cannibals cross: C B MMMCC

10 One returns: CC B MMMC

11 And brings over the third: - B MMMCCC

Remove 5 Sticks

• Given the following
configuration of sticks,
remove exactly 5 sticks in
such a way that the
remaining configuration
forms exactly 3 squares.

Traveling Salesman Problem

• Given a road map of n cities, find the shortest tour which
visits every city on the map exactly once and then return to
the original city (Hamiltonian circuit)

• (Geometric version):
– a complete graph of n vertices.
– n!/2n legal tours
– Find one legal tour that is shortest

Formalizing Search in a State Space
• A state space is a graph, (V, E) where V is a set of nodes

and E is a set of arcs, where each arc is directed from a node
to another node

• node: corresponds to a state
– state description
– plus optionally other information related to the parent of the

node, operation to generate the node from that parent, and other
bookkeeping data)

• arc: corresponds to an applicable action/operation.
– the source and destination nodes are called as parent

(immediate predecessor) and child (immediate successor)
nodes with respect to each other

– ancestors((predecessors) and descendents (successors)
– each arc has a fixed, non-negative cost associated with it,

corresponding to the cost of the action

• node generation: making explicit a node by applying
an action to another node which has been made explicit

• node expansion: generating all children of an explicit
node by applying all applicable operations to that node

• One or more nodes are designated as start nodes
• A goal test predicate is applied to a node to determine if its

associated state is a goal state
• A solution is a sequence of operations that is associated

with a path in a state space from a start node to a goal node
• The cost of a solution is the sum of the arc costs on the

solution path

• State-space search is the process of searching through a
state space for a solution by making explicit a sufficient
portion of an implicit state-space graph to include a goal
node.
– Hence, initially V={S}, where S is the start node; when S is

expanded, its successors are generated and those nodes are
added to V and the associated arcs are added to E. This
process continues until a goal node is generated (included in
V) and identified (by goal test)

• During search, a node can be in one of the three
categories:
– Not generated yet (has not been made explicit yet)
– OPEN: generated but not expanded
– CLOSED: expanded
– Search strategies differ mainly on how to select an OPEN

node for expansion at each step of search

A General State-Space Search Algorithm

• Node n
– state description
– parent (may use a backpointer) (if needed)
– Operator used to generate n (optional)
– Depth of n (optional)
– Path cost from S to n (if available)

• OPEN list
– initialization: {S}
– node insertion/removal depends on specific search strategy

• CLOSED list
– initialization: {}
– organized by backpointers

A General State-Space Search Algorithm

open := {S}; closed :={};
repeat

n := select(open); /* select one node from open for expansion */
if n is a goal

then exit with success; /* delayed goal testing */
expand(n)

/* generate all children of n
put these newly generated nodes in open (check duplicates)
put n in closed (check duplicates) */

until open = {};
exit with failure

Evaluating Search Strategies
• Completeness

– Guarantees finding a solution whenever one exists

• Time Complexity
– How long (worst or average case) does it take to find a solution?

Usually measured in terms of the number of nodes expanded

• Space Complexity
– How much space is used by the algorithm? Usually measured in

terms of the maximum size that the “OPEN" list becomes during
the search

• Optimality/Admissibility
– If a solution is found, is it guaranteed to be an optimal one? For

example, is it the one with minimum cost?

Uninformed vs. Informed Search
• Uninformed Search Strategies

– Breadth-First search
– Depth-First search
– Uniform-Cost search
– Depth-First Iterative Deepening search

• Informed Search Strategies
– Hill climbing
– Best-first search
– Greedy Search
– Beam search
– Algorithm A
– Algorithm A*

Breadth-First
• Algorithm outline:

– Always select from the OPEN, the node with the smallest depth for
expansion, and put all newly generated nodes into OPEN

– OPEN is organized as FIFO (first-in, first-out) list, i.e., a queue.
– Terminate if a node selected for expansion is a goal

• Properties
– Complete
– Optimal (i.e., admissible) if all operators have the same cost.

Otherwise, not optimal but finds solution with shortest path length
(shallowest solution).

– Exponential time and space complexity,
O(b^d) nodes will be generated, where

d is the depth of the solution and
b is the branching factor (i.e., number of children) at each node

Breadth-First
– A complete search tree of depth

d where each non-leaf node has
b children, has a total of 1 + b +
b^2 + ... + b^d = (b^(d+1) -
1)/(b-1) nodes

– Time complexity (# of nodes
generated): O(b^d)

– Space complexity (maximum
length of OPEN): O(b^d)

s
1

b

b^2

b^dd

2

1

– For a complete search tree of depth 12, where every node at depths
0, ..., 11 has 10 children and every node at depth 12 has 0 children,
there are 1 + 10 + 100 + 1000 + ... + 10^12 = (10^13 - 1)/9 =
O(10^12) nodes in the complete search tree.

• BFS is suitable for problems with shallow solutions

Example Illustrating Uninformed Search Strategies

S

CBA

D GE

1 5 8

9 4 5
3

7

Breadth-First Search

exp. node OPEN list CLOSED list
{ S } {}

S { A B C } {S}
A { B C D E G } {S A}
B { C D E G G' } {S A B}
C { D E G G' G" } {S A B C}
D { E G G' G" } {S A B C D}
E { G G' G" } {S A B C D E}
G { G' G" } {S A B C D E}

Solution path found is S A G <-- this G also has cost 10
Number of nodes expanded (including goal node) = 7

CLOSED List: the search tree connected by backpointers

S

CBA

D E

1 5 8

9 4 5
3

7

G’ G”G

Depth-First (DFS)
• Algorithm outline:

– Always select from the OPEN, the node with the
greatest depth for expansion, and put all newly
generated nodes into OPEN

– OPEN is organized as LIFO (last-in, first-out) list.
– Terminate if a node selected for expansion is a goal

• May not terminate without a "depth bound," i.e., cutting off search
below a fixed depth D (How to determine the depth bound?)

• Not complete (with or without cycle detection, and with or without
a cutoff depth)

• Exponential time, O(b^d), but only linear space, O(bd), required
• Can find deep solutions quickly if lucky
• When search hits a deadend, can only back up one level at a time

even if the "problem" occurs because of a bad operator choice near
the top of the tree. Hence, only does "chronological backtracking"

goal

Depth-First Search
return GENERAL-SEARCH(problem, ENQUEUE-AT-FRONT)
exp. node OPEN list CLOSED list

{ S }
S { A B C }
A { D E G B C}
D { E G B C }
E { G B C }
G { B C }

Solution path found is S A G <-- this G has cost 10
Number of nodes expanded (including goal node) = 5

S

CBA

D E

1 5 8

93
7

G

Uniform-Cost (UCS)

• Let g(n) = cost of the path from the start node to an open node n
• Algorithm outline:

– Always select from the OPEN the node with the least g(.) value
for expansion, and put all newly generated nodes into OPEN

– Nodes in OPEN are sorted by their g(.) values (in ascending order)
– Terminate if a node selected for expansion is a goal

• Called “Dijkstra's Algorithm” in the algorithms literature and
similar to “Branch and Bound Algorithm” in operations
research literature

Uniform-Cost Search
GENERAL-SEARCH(problem, ENQUEUE-BY-PATH-COST)
exp. node nodes list CLOSED list

{S(0)}
S {A(1) B(5) C(8)}
A {D(4) B(5) C(8) E(8) G(10)}
D {B(5) C(8) E(8) G(10)}
B {C(8) E(8) G’(9) G(10)}
C {E(8) G’(9) G(10) G”(13)}
E {G’(9) G(10) G”(13) }
G’ {G(10) G”(13) }

Solution path found is S B G <-- this G has cost 9, not 10
Number of nodes expanded (including goal node) = 7

S

CBA

D E

1 5

93
7

G G’ G”

8

54

Uniform-Cost (UCS)
• Complete (if cost of each action is not infinitesimal)

– The total # of nodes n with g(n) <= g(goal) in the state space is finite
– If n’ is a child of n, then g(n’) = g(n) + c(n, n’) > g(n)
– Goal node will eventually be generated (put in OPEN) and selected for

expansion (and passes the goal test)
• Optimal/Admissible

– Admissibility depends on the goal test being applied when a node is
removed from the OPEN list, not when it's parent node is expanded and
the node is first generated (delayed goal testing)

– Multiple solution paths (following different backpointers)
– Each solution path that can be generated from an open node n will have

its path cost >= g(n)
– When the first goal node is selected for expansion (and passes the goal

test), its path cost is less than or equal to g(n) of every OPEN node n (and
solutions entailed by n)

• Exponential time and space complexity,
– worst case: becomes BFS when all arcs cost the same

Depth-First Iterative Deepening (DFID)
• BF and DF both have exponential time complexity O(b^d)

BF is complete but has exponential space complexity (conservative)
DF has linear space complexity but is incomplete (radical)

• Space is often a harder resource constraint than time
• Can we have an algorithm that

– Is complete
– Has linear space complexity, and
– Has time complexity of O(b^d)

• DFID by Korf in 1985 (17 years after A*)
First do DFS to depth 0 (i.e., treat start node as
having no successors), then, if no solution found,
do DFS to depth 1, etc.

until solution found do
DFS with depth bound c
c = c+1

Depth-First Iterative Deepening (DFID)
• Complete (iteratively generate all nodes up to depth d)
• Optimal/Admissible if all operators have the same cost.

Otherwise, not optimal but does guarantee finding solution
of shortest length (like BF).

• Linear space complexity: O(bd), (like DF)
• Time complexity is a little worse than BFS or DFS because

nodes near the top of the search tree are generated multiple
times, but because almost all of the nodes are near the
bottom of a tree, the worst case time complexity is still
exponential, O(b^d)

Depth-First Iterative Deepening

• If branching factor is b and solution is at depth d, then nodes
at depth d are generated once, nodes at depth d-1 are generated
twice, etc., and node at depth 1 is generated d times.
Hence

total(d) = b^d + 2b^(d-1) + ... + db
<= b^d / (1 - 1/b)^2 = O(b^d).

– If b=4, then worst case is 1.78 * 4^d, i.e., 78% more nodes
searched than exist at depth d (in the worst case).

1 2

1 2 1

1

1 2 1

2 1

1

() 1 2 (1)
 (1 2 (1))
Let , then

() (1 2 (1))

 ()

()
1

d d

d d d

d d d

d d d

d
d

tota d b b d b d b
b b d b d b

x b
tota d b x d x d x

db x x x x
dx
d x xb
dx x

−

− − −

−

− −

−

+

= ⋅ + ⋅ + + − ⋅ + ⋅
= + ⋅ + + − ⋅ + ⋅

=
= + ⋅ + + − ⋅ + ⋅

= + + + +

−
=

−

L
L

L

L

1

2

2 1 2

 /* 1 when is large since 1/ 1* /
1

1 (1) (1) . Therefore
(1)

() /(1) /(1)

d d

d

d d

d xb x d b
dx x

x xb
x

tota d b x b b

+

−

≤ << <
−

⋅ − − ⋅ −
=

−
≤ − = −

Bi-directional search

• Alternate searching from the start state toward the goal and
from the goal state toward the start.

• Stop when the frontiers intersect.
• Works well only when there are unique start and goal states

and when actions are reversible
• Can lead to finding a solution more quickly (but watch out

for pathological situations).

Comparing Search Strategies

When to use what

• Depth-First Search:
– Many solutions exist
– Know (or have a good estimate of) the depth of solution

• Breadth-First Search:
– Some solutions are known to be shallow

• Uniform-Cost Search:
– Actions have varying costs
– Least cost solution is required
This is the only uninformed search that worries about costs.

• Iterative-Deepening Search:
– Space is limited and the shortest solution path is required

	Introduction to AI
	Building Goal-Based Agents
	What is the goal to be achieved?
	What are the actions?
	Actions
	Representing states
	Representing states
	Closed World Assumption
	Some example problems
	8-Puzzle
	8 puzzle
	A portion of the state space of a 8-Puzzle problem
	The 8-Queens Problem
	Missionaries and Cannibals
	Missionaries and Cannibals Solution
	Remove 5 Sticks
	Traveling Salesman Problem
	Formalizing Search in a State Space
	Slide Number 19
	Slide Number 20
	A General State-Space Search Algorithm
	A General State-Space Search Algorithm
	Evaluating Search Strategies
	Uninformed vs. Informed Search
	Breadth-First
	Breadth-First
	Example Illustrating Uninformed Search Strategies
	Breadth-First Search
	CLOSED List: the search tree connected by backpointers
	 Depth-First (DFS)
	Depth-First Search
	Uniform-Cost (UCS)
	Uniform-Cost Search
	Uniform-Cost (UCS)
	Depth-First Iterative Deepening (DFID)
	Depth-First Iterative Deepening (DFID)
	Depth-First Iterative Deepening
	Slide Number 38
	Bi-directional search
	Comparing Search Strategies
	When to use what

