Introduction to Al

Lecture 4

Uninformed Search Strategies

Dr. Tamal Ghosh
Department of CSE
Adamas University

Building Goal-Based Agents

 We have a goal to reach
— Driving from point A to point B
— Put 8 queens on a chess board such that no one attacks another
— Prove that John 1s an ancestor of Mary

 We have information about the current state, where we are
now at the beginning and after each action

 We have a set of actions we can take to move around
(change from where we are) if the preconditions are met

* Objective: find a sequence of legal actions which will bring
us from the start point to a goal

What is the goal to be achieved?

* Could describe a situation we want to achieve, a set of properties that we want to
hold, etc.

* Requires defining a “goal test” so that we know what it means to have
achieved/satisfied our goal.

 This is a hard part that 1s rarely tackled in Al, usually assuming that the system
designer or user will specify the goal to be achieved.

What are the actions?

* Quantify all of the primitive actions or events that are
sufficient to describe all necessary changes in solving a
task/goal.

« No uncertainty associated with what an action does to the
world. That 1s, given an action (aka operator or move) and a
description of the current state of the world, the action

completely specifies
— Precondition: if that action CAN be applied to the
current world (i.e., 1s 1t applicable and legal), and
— Effect: what the exact state of the world will be after the

action 1s performed in the current world (i.e., no need for
"history" information to be able to compute what the new

world looks like).

Actions

 Note also that actions can all be considered as discrete events
that can be thought of as occurring at an instant of time.

— That 1s, the world is 1n one situation, then an action occurs and
the world 1s now 1n a new situation. For example, if "Mary is in
class" and then performs the action "go home," then in the next
situation she 1s "at home." There is no representation of a point in
time where she 1s neither in class nor at home (i.e., in the state of
"going home").

» The number of operators needed depends on the
representation used in describing a state.

» Actions often are associated with costs

Representing states

e At any moment, the relevant world 1s represented as a state
— Initial (start) state: S

— An action (or an operation) changes the current state to
another state (if it 1s applied): state transition

— An action can be taken (applicable) only if the its
precondition 1s met by the current state

— For a given state, there might be more than one applicable
actions

— Goal state: a state satisfies the goal description or passes the
goal test

— Dead-end state: a non-goal state to which no action 1s
applicable

Representing states

« Stat space:

— Includes the 1nitial state S and all other states that are
reachable from S by a sequence of actions

— A state space can be organized as a graph:
nodes: states in the space
arcs: actions/operations

* The size of a problem 1s usually described in terms of the
number of states (or the size of the state space) that are possible.

— Tic-Tac-Toe has about 39 states.

— Checkers has about 10740 states.

— Rubik's Cube has about 10"19 states.

— Chess has about 107120 states 1n a typical game.
— GO has more states than Chess

Closed World Assumption

* We will generally use the Closed World
Assumption. It 1s a formal logic that assumes that
a statement that 1s true 1s also known to be true.
This means that what 1s not known to be true 1s
false.

 All necessary information about a problem domain
1s available 1in each percept so that each state 1s a
complete description of the world.

 There 1s no incomplete information at any point in
time.

Some example problems

* Toy problems and micro-worlds
—8-Puzzle
—Missionaries and Cannibals
— Cryptarithmetic
—Remove 5 Sticks

—Traveling Salesman Problem (TSP)
* Real-world-problems

8-Puzzle

Given an initial configuration of 8 numbered tiles on a 3 x
3 board, move the tiles in such a way so as to produce a
desired goal configuration of the tiles.

5 4 1 2 3
6 1 8 8 4
7 3 2 7 6 5

Start State Goal State

8 puzzle

« State: 3 x 3 array configuration of the tiles on the board.
* Operators: Move Blank square Left, Right, Up or Down.

— This 1s a more efficient encoding of the operators than one in which
cach of four possible moves for each of the 8 distinct tiles is used.

o Initial State: A particular configuration of the board.
* Goal: A particular configuration of the board.
» The state space 1s partitioned into two subspaces

« NP-complete problem, need to examine O(27k) states
where k 1s the length of the solution path.

* 15-puzzle problems (4 x 4 grid with 15 numbered tiles), and
N-puzzles (N = n"2-1)

A portion of the state space of a 8-Puzzle problem

504

6/1|8

732
51 | 4 5/ 4| 8
618 6 1
7| 3| 2 7| 3| 2

5 1| 4 5| 4
6 1{8
7| 3| 2 71 3|2
5/1| 4
8

The 8-Queens Problem

Place eight queens on a
chessboard such that no
queen attacks any
other!

Total # of states:
4.4x107N9

Total # of solutions:
12 (or 96)

Missionaries and Cannibals

There are 3 missionaries, 3 cannibals,
and 1 boat that can carry up to two
people on one side of a river.

Goal: Move all the missionaries and
cannibals across the river.

Constraint; Missionaries can never be
outnumbered by cannibals on either side

of river, or else the missionaries are
killed.

State: configuration of missionaries and
cannibals and boat on each side of river.

Operators: Move boat containing 1 or 2
occupants across the river (in either
direction) to the other side.

J Missionaries and 3 Cannibals wish to cross
the river. They hawe a boat that will carny o
people. Everyone can navigatethe boat. If at
any time the Cannibals cutnumber the
missionaries on either bank of the river, they
will eatthe Missianaries. Find the smallest
number of crossings that will allow everyane
to cross the river safely,

The problem can be solved in 11 mowes. But
people rarely getthe optimal solution,
because the MC problem contains a 'tricky’
state atthe end, where two people move
back across the river,

O J o U1 b w NP O

9

Missionaries and Cannibals Solution

Initial setup:

Two cannibals cross over:
One comes back:

Two cannibals go over agailn:
One comes back:

TwOo missionaries Cross:

A missionary & cannibal return:

Two missionaries Cross agailn:
A cannibal returns:

Two cannibals cross:

10 One returns:
11 And brings over the third:

Near side

MMMCCC B
MMMC
MMMCC B
MMM

MMMC B
MC

MMCC B
CC

CCC B
C

CC B

Far side

B CC
C

B CCC
CcC

B MMCC
MC

B MMMC
MMM

B MMMCC
MMMC

B MMMCCC

Remove 5 Sticks

* Given the following ‘
configuration of sticks,
remove exactly 5 sticks in
such a way that the ‘
remaining configuration
forms exactly 3 squares. ——

Traveling Salesman Problem

* Given a road map of n cities, find the shortest tour which
visits every city on the map exactly once and then return to
the original city (Hamiltonian circuit)

* (Geometric version):
—a complete graph of n vertices.
—n!/2n legal tours
— Find one legal tour that is shortest

Formalizing Search in a State Space

« A state space 1s a graph, (V, E) where V 1s a set of nodes
and E 1s a set of arcs, where each arc 1s directed from a node
to another node

e node: corresponds to a state
— state description

— plus optionally other information related to the parent of the
node, operation to generate the node from that parent, and other
bookkeeping data)

 arc: corresponds to an applicable action/operation.

— the source and destination nodes are called as parent
(immediate predecessor) and child (immediate successor)
nodes with respect to each other

— ancestors((predecessors) and descendents (successors)

— each arc has a fixed, non-negative cost associated with it,
corresponding to the cost of the action

- node generation: making explicit a node by applying
an action to another node which has been made explicit
- node expansion: generating all children of an explicit
node by applying all applicable operations to that node
* One or more nodes are designated as start nodes

A goal test predicate 1s applied to a node to determine if 1ts
associated state 1s a goal state

A solution is a sequence of operations that 1s associated
with a path 1n a state space from a start node to a goal node

* The cost of a solution 1s the sum of the arc costs on the
solution path

 State-space search is the process of searching through a
state space for a solution by making explicit a sufficient
portion of an implicit state-space graph to include a goal
node.

— Hence, initially V={S}, where S is the start node; when S 1s
expanded, its successors are generated and those nodes are
added to V and the associated arcs are added to E. This
process continues until a goal node 1s generated (included in
V) and 1dentified (by goal test)

* During search, a node can be in one of the three
categories:
— Not generated yet (has not been made explicit yet)
— OPEN: generated but not expanded

— CLOSED: expanded

— Search strategies differ mainly on how to select an OPEN
node for expansion at each step of search

A General State-Space Search Algorithm

* Node n
— state description
— parent (may use a backpointer) (if needed)
— Operator used to generate n (optional)
— Depth of n (optional)
— Path cost from S to n (if available)
* OPEN list

— 1nitialization: {S}
— node 1nsertion/removal depends on specific search strategy

« CLOSED list
— initialization: {}

— organized by backpointers

A General State-Space Search Algorithm

open = {S}; closed :={};
repeat
n = select(open); /* select one node from open for expansion */
if n1s a goal
then exit with success; /* delayed goal testing */
expand(n)
/* generate all children of n
put these newly generated nodes in open (check duplicates)
put n in closed (check duplicates) */
until open = {};

exit with failure

Evaluating Search Strategies

 Completeness
— Guarantees finding a solution whenever one exists
* Time Complexity

— How long (worst or average case) does it take to find a solution?
Usually measured in terms of the number of nodes expanded

* Space Complexity

— How much space 1s used by the algorithm? Usually measured in
terms of the maximum size that the “OPEN" list becomes during
the search

* Optimality/Admissibility

— If a solution 1s found, 1s 1t guaranteed to be an optimal one? For
example, 1s it the one with minimum cost?

Uninformed vs. Informed Search

e Uninformed Search Strategies
— Breadth-First search
— Depth-First search
— Uniform-Cost search
— Depth-First Iterative Deepening search

* Informed Search Strategies
— Hill climbing
— Best-first search
— Greedy Search
— Beam search
— Algorithm A
— Algorithm A*

Breadth-First

 Algorithm outline:

— Always select from the OPEN, the node with the smallest depth for
expansion, and put all newly generated nodes into OPEN

— OPEN 1s organized as FIFO (first-in, first-out) list, 1.e., a queue.
— Terminate 1f a node selected for expansion 1s a goal

* Properties
— Complete

— Optimal (i.e., admissible) if all operators have the same cost.
Otherwise, not optimal but finds solution with shortest path length
(shallowest solution).

— Exponential time and space complexity,
O(b"d) nodes will be generated, where
d 1s the depth of the solution and
b 1s the branching factor (i.e., number of children) at each node

Breadth-First

— A complete search tree of depth
d where each non-leaf node has
b children, has a total of 1 + b +
b2 + ... +b*d = (b(d+1) -
1)/(b-1) nodes

— Time complexity (# of nodes
generated): O(b”d)

— Space complexity (maximum
length of OPEN): O(b”d)

1

2

- S

1
— A b
b2

- bAd

d A\ 4

— For a complete search tree of depth 12, where every node at depths
0, ..., 11 has 10 children and every node at depth 12 has 0 children,
there are 1 + 10+ 100 + 1000 + ... + 10"12 = (1013 - 1)/9 =
O(10”12) nodes in the complete search tree.

* BFS is suitable for problems with shallow solutions

Example Illustrating Uninformed Search Strategies

Breadth-First Search

exp. node OPEN list CLOSED list
1S} #
S {ABC} {S}
A {BCDEG} {S A}
B {CDEGG'} {S A B}
C {DEGG' G"} {SABC}
D {EGG' G"} {SABCD}
E {GG' G"} {ISABCDE}
G {G'G"} {SABCDE}

Solution path found is S A G <-- this G also has cost 10
Number of nodes expanded (including goal node) =7

CLOSED List: the search tree connected by backpointers

SN
@ Q.
@/73@\@

Depth-First (DFS)

 Algorithm outline:
— Always select from the OPEN, the node with the &

sreatest depth for expansion, and put all newly
generated nodes into OPEN

— OPEN 1s organized as LIFO (last-in, first-out) list.

— Terminate 1f a node selected for expansion 1s a goal ~— ™" :
goa

 May not terminate without a "depth bound," 1.e., cutting off search
below a fixed depth D (How to determine the depth bound?)

* Not complete (with or without cycle detection, and with or without
a cutoff depth)

« Exponential time, O(b”d), but only linear space, O(bd), required
 Can find deep solutions quickly if lucky

* When search hits a deadend, can only back up one level at a time
even 1f the "problem" occurs because of a bad operator choice near
the top of the tree. Hence, only does "chronological backtracking'

Depth-First Search

return GENERAL-SEARCH(problem, ENQUEUE-AT-FRONT)

exp. node OPEN list CLOSED list
1S}
S {ABC)
A {DEGBC})/C%SN
D {(EGBC} & & ©
E {GBC} /7 9
G {BC} o @

Solution path found 1s S A G <-- this G has cost 10
Number of nodes expanded (including goal node) = 5

Uniform-Cost (UCS)

* Let g(n) = cost of the path from the start node to an open node n

 Algorithm outline:

— Always select from the OPEN the node with the least g(.) value
for expansion, and put all newly generated nodes into OPEN

— Nodes in OPEN are sorted by their g(.) values (in ascending order)
— Terminate 1f a node selected for expansion 1s a goal
» Called “Dijkstra’s Algorithm” 1n the algorithms literature and

similar to “Branch and Bound Algorithm” in operations
research literature

Uniform-Cost Search

GENERAL-SEARCH(problem, ENQUEUE-BY-PATH-COST)

exp. node nodes list CLOSED list
15(0)}
S {A(1) B(5) C(8);
A {D(4) B(5) C(8) E(8) G(10)}

1 CN
D {B(5) C(8) E(8) G(10)} / 0
B {C(8)E®) G’(9) G(10)} %I&) ?5
C {ES)G(9) G(10) G7(13)} 7
E ® ® © @

1G7(9) G(10) G*(13) }
G {G(10)G’(13) }
Solution path found is S B G <-- this G has cost 9, not 10
Number of nodes expanded (including goal node) =7

Uniform-Cost (UCS)

« Complete (if cost of each action 1s not infinitesimal)
— The total # of nodes n with g(n) <= g(goal) in the state space is finite
— If n’ 1s a child of n, then g(n’) = g(n) + ¢(n, n’) > g(n)
— Goal node will eventually be generated (put in OPEN) and selected for
expansion (and passes the goal test)

* Optimal/Admissible

— Admissibility depends on the goal test being applied when a node 1s
removed from the OPEN list, not when it's parent node is expanded and
the node is first generated (delayed goal testing)

— Multiple solution paths (following different backpointers)

— Each solution path that can be generated from an open node n will have
its path cost >= g(n)

— When the first goal node 1s selected for expansion (and passes the goal
test), 1ts path cost 1s less than or equal to g(n) of every OPEN node n (and
solutions entailed by n)

* Exponential time and space complexity,
— worst case: becomes BFS when all arcs cost the same

Depth-First Iterative Deepening (DFID)
* BF and DF both have exponential time complexity O(b”d)

BF is complete but has exponential space complexity (conservative)
DF has linear space complexity but is incomplete (radical)

» Space 1s often a harder resource constraint than time

« Can we have an algorithm that
— Is complete
— Has linear space complexity, and
— Has time complexity of O(b”d)

* DFID by Korf 1n 1985 (17 years after A*)
First do DFS to depth O (i.e., treat start node as
having no successors), then, if no solution found,
do DFS to depth 1, etc.

until solution found do JAN A A
DFS with depth bound c
c=ctl / \

Depth-First Iterative Deepening (DFID)

« Complete (iteratively generate all nodes up to depth d)

« Optimal/Admissible 1if all operators have the same cost.
Otherwise, not optimal but does guarantee finding solution
of shortest length (like BF).

e Linear space complexity: O(bd), (like DF)

* Time complexity 1s a little worse than BFS or DFS because
nodes near the top of the search tree are generated multiple
times, but because almost all of the nodes are near the
bottom of a tree, the worst case time complexity 1s still
exponential, O(b”d)

Depth-First Iterative Deepening

« If branching factor 1s b and solution 1s at depth d, then nodes
at depth d are generated once, nodes at depth d-1 are generated
twice, etc., and node at depth 1 1s generated d times.

Hence
total(d) = b~ d +2b”(d-1) + ... +db
<=b"d /(1 - 1/b)*2 = O(b"d).
— If b=4, then worst case is 1.78 * 4°d, 1.e., 78% more nodes
searched than exist at depth d (in the worst case).

tota(d)=1-b" +2-b"+L +(d-1)-b*+d b
=b'(1+2-0" +L +(d-1)-b" +d -b")
Letx=b", then
tota(d) = b (1+2-x' +L +(d—1)-x* 2 +d-x*")
:bdi
dx
_p 4 (x=x")
dx 1—-x
< pe d x
dx 1—x
_pe L= = x-(=])
(1-x)
tota(d) < b* /(1— x)2 — p? /(1 _b—l)z

()C+x2 +L +xd_1+xd)

/*x“*! << 1 when d is large since 1/b <1*/

. Therefore

Bi-directional search

em i
S T

 Alternate searching from the start state toward the goal and
from the goal state toward the start.

» Stop when the frontiers intersect.

* Works well only when there are unique start and goal states
and when actions are reversible

 Can lead to finding a solution more quickly (but watch out
for pathological situations).

Comparing Search Strategies

o Breadth- Uniform- Depth- Depth- lterative Bidirectional
riteon First Cost First Limited Deepening (if applicable)
Time b b b" b b b
Space aa b bm bl b B
Uptimal” Yes Yes Mo Mo Yes Yes
Complete? Yes Yes No Yes, if{ > d Yes Yes

When to use what

* Depth-First Search:

— Many solutions exist
— Know (or have a good estimate of) the depth of solution

* Breadth-First Search:

— Some solutions are known to be shallow
* Uniform-Cost Search:

— Actions have varying costs

— Least cost solution 1s required

This is the only uninformed search that worries about costs.
 Iterative-Deepening Search:

— Space 1s limited and the shortest solution path is required

	Introduction to AI
	Building Goal-Based Agents
	What is the goal to be achieved?
	What are the actions?
	Actions
	Representing states
	Representing states
	Closed World Assumption
	Some example problems
	8-Puzzle
	8 puzzle
	A portion of the state space of a 8-Puzzle problem
	The 8-Queens Problem
	Missionaries and Cannibals
	Missionaries and Cannibals Solution
	Remove 5 Sticks
	Traveling Salesman Problem
	Formalizing Search in a State Space
	Slide Number 19
	Slide Number 20
	A General State-Space Search Algorithm
	A General State-Space Search Algorithm
	Evaluating Search Strategies
	Uninformed vs. Informed Search
	Breadth-First
	Breadth-First
	Example Illustrating Uninformed Search Strategies
	Breadth-First Search
	CLOSED List: the search tree connected by backpointers
	 Depth-First (DFS)
	Depth-First Search
	Uniform-Cost (UCS)
	Uniform-Cost Search
	Uniform-Cost (UCS)
	Depth-First Iterative Deepening (DFID)
	Depth-First Iterative Deepening (DFID)
	Depth-First Iterative Deepening
	Slide Number 38
	Bi-directional search
	Comparing Search Strategies
	When to use what

